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Abstract

Themajority of work carried out in the formal methods
communitythroughoutthelast threedecadeshas(for good
reasons)beendevoted to special languages designedto
make it easierto experimentwith mechanizedformalmeth-
odssuch as theoremprovers and modelcheckers. In this
paperwewill attemptto giveconvincingargumentsfor why
we believe it is time for the formal methodscommunityto
shift someof its attentiontowardstheanalysisof programs
writtenin modernprogramminglanguages.In keepingwith
thisphilosophywehavedevelopeda verificationandtesting
environmentfor Java, Java PathFinder (JPF), which inte-
gratesmodelchecking, programanalysisandtesting. Part
of this work hasconsistedof building a new Java Virtual
Machinethat interpretsJavabytecode. JPFusesstatecom-
pressionto handlebig states,and partial order reduction,
slicing, abstraction,andruntimeanalysistechniquesto re-
ducethestatespace. JPF hasbeenappliedto a real-time
avionicsoperating systemdevelopedat Honeywell, illus-
trating an intricate error, and to a modelof a spacecraft
controller, illustrating thecombinationof abstraction,run-
timeanalysis,andslicingwith modelchecking.

1 Intr oduction

Themajority of work carriedout in theformal methods
communitythroughoutthelastthreedecades,sinceHoare’s
axiomaticmethodfor proving programscorrect[24], has
beendevoted to special languagesthat differ from main
streamprogramminglanguages.Typical examplesarefor-
mal specificationlanguages[40, 2, 39], purely logic based
languagesusedin theoremprovers[13, 33, 7], andguarded
commandlanguagesusedin modelcheckers[30, 29, 28].

In a few cases,modeling languageshave beendesigned
to resembleprogramminglanguages[26], althoughthe fo-
cushasbeenon protocoldesigns.Someof theselinguistic
choiceshavemade,andstill makeit feasibleto moreconve-
nientlyexperimentwith new algorithmsandframeworksfor
analyzingsystemmodels.For example,a logic basedlan-
guageis well suitedfor rewriting, anda rulebasedguarded
commandnotationis convenientfor a modelchecker. We
believe thatcontinuedresearchin speciallanguagesis im-
portantsincethis researchinvestigatessemanticallyclean
languageconceptsandwill impactfuturelanguagedesigns
andanalysisalgorithms.

We, however, want to arguethat a next importantstep
for theformal methodssubgroupof thesoftwareengineer-
ing communitycould be to focussomeof its attentionon
real programswritten in modernprogramminglanguages.
Webelievethatstudyingprogramminglanguagessomehow
will result in somenew challengesthat will drive the re-
searchin new directionsasdescribedin thefirst partof the
paper. Our main interestis in multi-threaded,interactive
programs,whereunpredictableinterleavingscancauseer-
rors,but theargumentextendsto sequentialprograms.

In the secondpart of the paper, we describeour own
effort to follow this vision by presentingthe development
of a verification,analysisandtestingenvironmentfor Java,
calledJava PathFinder(JPF).This environmentcombines
modelcheckingtechniqueswith techniquesfor dealingwith
largeor infinitestatespaces.Thesetechniquesincludestatic
analysisfor supportingpartialorderreductionof thesetof
transitionsto be exploredby the modelchecker, predicate
abstractionfor abstractingthestatespace,andruntimeanal-
ysissuchasraceconditiondetectionandlock orderanalysis
to pinpointpotentiallyproblematiccodefragments.Part of
this work hasconsistedof building a new Java Virtual Ma-
chine(JVM
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calledfromthemodelcheckingengineto interpretbytecode
generatedby aJava compiler.

We believe it is an attractive idea to develop a verifi-
cationenvironmentfor Java for threereasons.First, Java
is a modernlanguagefeaturingimportantconceptssuchas
object-orientationandmulti-threadingwithin onelanguage.
LanguagessuchasC andC++, for example,donotsupport
multi-threadingaspart of their core. Second,Java is sim-
ple, for examplecomparedto C++. Third, Java is compiled
into bytecode,andhence,the analysiscanbe doneat the
bytecodelevel. This impliesthatsucha tool canbeapplied
to any languagethatcanbetranslatedinto bytecode1. Byte-
codefurthermoreseemsto be a convenientbreakdown of
Java into easilymanageablebytecodeinstructions;andthis
seemsto have easedthe constructionof our analysistool.
JPFis the secondgenerationof a Java modelchecker de-
velopedatNASA Ames.Thefirst generationof JPF(JPF1)
[16, 20] wasa translatorfrom Java to thePromelalanguage
of theSpinmodelchecker.

Thepaperis organizedasfollows.Section2 outlinesour
argumentsfor applyingformal methodsto programs.Sec-
tion 3 describesJPF. Section4 presentstwo applications
of JPF:a real-timeavionicsoperatingsystemdevelopedat
Honeywell, illustrating an intricateerror; and a modelof
a spacecraft controller, illustrating thecombinationof ab-
straction,runtimeanalysis,andslicingwith modelchecking
to locateadeadlock.Botherrorswereerrorsin therealcode
of thesesystems.Finally, Section5 containsconclusions
anda descriptionof futurework.

2 Why AnalyzeCode?

It is often arguedthat verification technologiesshould
be appliedto designsratherthanto programssincecatch-
ing errorsearlyat thedesignlevel will reducemaintenance
costslater on. We do agreethat catchingerrorsearly is
crucial. Stateof the art formal methodsalso most natu-
rally lendthemselvesto designs,simplydueto thefactthat
designshave lesscomplexity, which make formal analysis
morefeasibleandpractical.Hence,designverificationis a
very importantresearchtopic,with themostrecentpopular
subjectbeinganalysisof statecharts[15], suchasfor exam-
ple foundin UML [3]. However, we want to arguethatthe
formalmethodscommunityshouldputsomeof its attention
on programsfor a numberof reasonsthatwe will describe
below.

Firstof all, programsoftencontainfatalerrorsin spiteof
theexistenceof carefuldesigns.Many deadlocksandcriti-
cal sectionviolationsfor exampleareintroducedat a level
of detailwhichdesignstypically donotdealwith, if formal
designsaremadeatall. Thiswasfor exampledemonstrated

1For example, there already exist translators from Eiffel, Ada,
OCAML, SchemeandPrologto bytecode.

in the analysisof NASA’s RemoteAgent spacecraftcon-
trol systemwritten in theLISPprogramminglanguage,and
analyzedusingtheSpinmodelchecker [19]. Hereseveral
classicalmulti-threadingerrorswerefoundthatwerenotre-
ally designerrors,but ratherprogrammingmistakessuchas
forgettingto enclosecodein critical sections.Oneof the
missingcritical sectionerrorsfound using Spin was later
introducedin a sibling module,andcauseda realdeadlock
during flight in space,60,000miles from earth[18]; see
Section4.1.Anotherwayof describingtherelationshipbe-
tweendesignandcodeis to distinguishbetweentwo kinds
of errors.On theonehandthereareerrorscausedby flaws
in underlyingcomplex algorithms. Examplesof complex
algorithmsfor parallel systemsarecommunicationproto-
cols [21, 23] and garbagecollection algorithms[17, 35].
The otherkind of errorsaremoresimplemindedconcur-
rency programmingerrors,suchas forgetting to put code
in a critical sectionor causingdeadlocks.This kind of er-
rors will typically not be caughtin a design,andthey are
a realhazard,in particularin safetycritical systems.Com-
plex algorithmsshouldprobablybeanalyzedat thedesign
level,althoughthereis noreasonsuchdesignscannotbeex-
pressedin a modernprogramminglanguage.However, as
will beshown onarealexamplein Section4.2,deepdesign
errorscanalsoappearin thecode.

Second,onecanarguethat sincemodernprogramming
languagesaretheresultof decadesof research,they arethe
resultof goodlanguagedesignprinciples.Hence,they may
be good design/modelinglanguages.This is to someex-
tent alreadyan appliedideawithin UML wherestatechart
transitions(betweencontrol states)canbe annotatedwith
code fragmentsin your favorite programminglanguage.
In fact, the distinction betweendesignand programgets
blurredsincefinal codemay get generatedfrom the UML
designs.An additionalobservationis thatsomeprogramde-
velopmentmethodssuggesta prototypingapproachwhere
the systemis incrementallyconstructedusing a real pro-
gramminglanguage,ratherthanbeingderived from a pre-
constructeddesign.This wasfor examplethecasewith the
RemoteAgent[32] mentionedabove. Furthermore,any re-
searchresultonprogramminglanguagescanbenefitdesign
verificationsincedesignstypically arelesscomplex.

A third, andverydifferentkind of argumentfor studying
verificationof realprogramsis thatsuchresearchwill force
the communityto dealwith very hardproblems,and this
maydrivetheresearchinto new areas.Webelievefor exam-
ple that it couldbeadvantageousfor formal methodsto be
combinedwith otherresearchfields that traditionallyhave
beenmorefocusedon programs,suchasprogramanalysis
andtesting.Suchtechniquesaretypically lesscomplete,but
they oftenscalebetter. We believe thattheobjectiveof for-
malmethodsis notonly to proveprogramscorrect,but also
to debugprogramsandlocateerrors.With suchamorelim-



ited ambition,onemaybe ableto apply techniqueswhich
are lesscompleteandbasedon heuristics,suchascertain
testingtechniques.

Fourth, studyingformal methodsfor programminglan-
guagesmayfurthermorehave somederivedadvantagesfor
the formal methodscommunitydue to the fact that there
is a tendency to standardizeprogramminglanguages.This
may make it feasibleto compareand integrate different
tools working on the samelanguage- or on “clean sub-
sets”of theselanguages.As mentionedabove, it would be
very usefulto studytherelationshipbetweenformal meth-
ods and other areassuchas programanalysisand testing
techniques.Working at the level of programswill make it
possibleto betterinteractwith thesecommunities.We have
alreadyhadonesuchexperiencein our informal collabora-
tion with KansasStateUniversity, whereour tool generated
a slicing criteriabasedon a runtimeanalysis,andtheir tool
could slice the Java programbasedon this criteria, where
afterwecouldapplyourmodelcheckerto theresultingpro-
gram.A final derivedadvantagewill bethemany ordersof
magnitudeincreasedaccessto realexamplesanduserswho
maywantto experimentwith thetechniquesproduced.This
mayhave a very importantimpacton driving the research
towardsscalablesolutions.

In general,it is our hopethat formal methodswill play
a role for everydaysoftwaredevelopers. By focusingon
real programminglanguageswe hopethat our community
will beableto interactmoreintensivelyonsolvingcommon
problems.Furthermore,thetechnologytransferproblemso
oftenmentionedmayvanish,andinsteadbe replacedby a
technologydemand.

3 Model CheckingJava Programs

It is well known thatconcurrentprogramsarenon-trivial
to construct,andwith Java essentiallygiving thecapability
to anyonefor writing concurrentprograms,we believe, a
modelchecker for Java might have a bright future. In fact,
oneareawherewebelieve it canhaveanimmediateimpact
is in environmentswhereJava is taught. In the restof this
sectionwe will addresssomeof themostimportantissues
in themodelcheckingof programminglanguages.Specifi-
cally, wewill highlightthemajorreasonswhymodelcheck-
ing programsis consideredhard,andthenillustratehow we
tackletheseproblemswithin JPF.

3.1 Complexity of LanguageConstructs

Input languagesfor modelcheckersareoften kept rel-
atively simple to allow efficient processingduring model
checking.Of course,thereareexceptionsto this, for exam-
ple, Promelathe input notationof Spin [26], moreresem-
bles a programminglanguagethan a modelinglanguage.

Generalprogramminglanguages,however, containmany
new featuresalmostnever seenin model checkinginput
languages,for example,classes,dynamicmemoryalloca-
tion, exceptions,floatingpoint numbers,methodcalls,etc.
How will thesebe treated? Threesolutionsare currently
being pursuedby different groupstrying to model check
Java: onecan translatethe new featuresto existing ones,
onecancreatea modelchecker that canhandlethesenew
features,or, onecanusea combinationof translationanda
new/extendedmodelchecker.

3.1.1 Translation

The first versionof JPF[20], aswell asthe JCAT system
[10], werebasedona translationfrom Java to Promela.Al-
thoughboththesesystemsweresuccessfulin modelcheck-
ing someinterestingJava programs[22], suchsource-to-
sourcetranslationssuffer from two seriousdrawbacks:

LanguageCoverage — Each language feature of the
sourcelanguagemusthavea“counterpart”in thedesti-
nationlanguage.This is not trueof Java andPromela,
sincePromelafor example,doesnot supportfloating
pointnumbers.

SourceRequired — In orderto translateonesourceto an-
other, theoriginalsourceis required,whichis oftennot
thecasefor Java,sinceonly thebytecodesareavailable
— for examplein the caseof the libraries and code
loadedover theWWW.

For Java, the requirementthat the sourceexists canbe
overcomeby rather doing a translationfrom bytecodes.
Thisis theapproachusedby theBANDERA tool [6], where
bytecodes,aftersomemanipulation,aretranslatedto either
Promelaor theSMV modelchecker’s inputnotation.

3.1.2 Custom-madeModel Checker

In order to overcomethe languagecoverageproblemit is
however obvious that either, the current model checkers
needto beextended,or a new custom-mademodelchecker
mustbedeveloped.Somework is beingdoneonextending
the Spin model checker to handledynamicmemoryallo-
cation[11, 42], but againin termsof Java this only covers
a part of the languageand much more is requiredbefore
full Java languagecoveragewill beachievedthisway. With
JPFwetooktheotherroute,wedevelopedourown custom-
mademodelchecker that canexecuteall the bytecodein-
structions,andhenceallow thewholeof Java to bemodel
checked. Themodelchecker consistsof our own Java Vir-
tual Machine(JVM
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) thatexecutesthebytecodesanda

searchcomponentthatguidestheexecution. Note that the
modelchecker is thereforeanexplicit statemodelchecker,
similar to Spin,ratherthanasymboliconebasedonBinary



DecisionDiagramssuchasSMV [29]. A nice side-effect
of developingour own model checker was the easewith
which we areableto extendthemodelchecker with inter-
estingnew searchalgorithms—thiswould, in general,not
havebeeneasyto achievewith existingmodelcheckers(es-
pecially not with Spin). A major designdecisionfor JPF
wasto make it asmodularandunderstandableto othersas
possible,but wesacrificedspeedin theprocess— Spinis at
leastanorderof magnitudefasterthanJPF. We believethis
is apriceworthpayingin thelongrun.

JPFis written in Java andusesthe JavaClasspackage2

to manipulateclassfiles.Althoughwe againsacrificespeed
to someextendby not usingC/C++, thereis no doubt in
our mindsthat doing JPFin Java hassaved us monthson
developmenttime. Theinitial system,thatcouldonly han-
dle integerbasedbytecodes(i.e. thesamelanguagesubset
astheJava modelcheckerstranslatingto Spin),wasdevel-
opedin 3 man-months.Thesystemasdescribedin this pa-
per, requiredapproximately12 man-months.The current
modelcheckercanonly checkfor deadlocks,invariantsand
user-definedassertionsin the code; temporallogic model
checkingwill beaddedin thenearfuture

3.2 ComplexStates

In ordertoensureterminationduringexplicit statemodel
checkingonemustknow whenastateis revisited.It is com-
monfor a hashtableto beusedto storestates,whichmeans
an efficient hashfunction is requiredas well as fast state
comparison.

TheVerisoftsystem[12] wasdevelopedto modelcheck
software,but thedesignpremisewasthatthestateof asoft-
waresystemis toocomplex to beencodedefficiently, hence
Verisoft doesnot storeany of the statesit visits (Verisoft
limits thedepthof thesearchto getaroundthetermination
problemmentionedabove). SincetheVerisoftsystemexe-
cutestheactualcode(C/C++),andhaslittle controloverthe
execution,exceptfor someuser-defined“hooks” into com-
municationstatements,it is almostimpossibleto encodethe
systemstateefficiently. This insightalsoconvincedusthat
we cannottie our modelcheckingalgorithmin with anex-
isting JVM, that is in generalhighly optimizedfor speed,
but will notallow thememoryto beencodedeasily.

Ourdesignphilosophywasto keepthestatesof theJVM
in a complex data-structure,but onethatwould allow usto
encodethe statesin an efficient fashionin order to deter-
mine if we have visited statesbefore. Specifically, each
stateconsistsof threecomponents:information for each
threadin theJava program,thestaticvariables(in classes)
andthe dynamicvariables(in objects)in the system.The
informationfor eachthreadconsistsof a stackof frames,
onefor eachmethodcalled,whereasthestaticanddynamic

2http://www.inf.fu- berlin.de/˜dahm/JavaClass/

informationconsistsof informationaboutthe locksfor the
classes/objectsandthefieldsin theclasses/objects.Eachof
the componentsmentionedabove is a Java data-structure.
In earlystagesof JPFdevelopmentwedid storethesestruc-
turesdirectlyin ahashtable,butwith terribleresultsin terms
of memoryand speed: 512Mb would be exhaustedafter
only storing

���	�
���
�
states,and

���	�
statescouldbeevalu-

atedeachsecond(ona SPARC ULTRA60).
The solution we adoptedto make the storing of states

moreefficient,wasageneralizationof theCollapsemethod
from Spin[25]: eachcomponentof theJVM stateis stored
separatelyin a table,andtheindex atwhich thecomponent
is storedis then usedto representthe component. More
specifically, eachcomponent(for examplethe fields in a
class/object)is storedin a tablefor that component,if the
specificcomponentis alreadyin the table its index is re-
turned,andif it is uniqueit is storedat the next openslot
andthat index is returned.This hastheeffect of encoding
a largestructureinto no morethananinteger3. Collapsing
statesin this fashionallows fast statecomparisons,since
only theindexesneedto becomparedandnot thestructures
themselves. Thephilosophybehindthecollapsingscheme
is that althoughmany statescan be visited by a program
theunderlyingcomponentsof many of thesestateswill be
the same. A somewhat trivial exampleof this is when a
statementupdatesalocalvariablewithin amethod:theonly
partof thesystemthatchangedis theframerepresentingthe
method,all theotherpartsof thesystemstateis unaffected
andwill collapseto thesameindexes.Thisactuallyalludes
to theothersimpleoptimizationweadded:only updatethe
partof thesystemthatchanges,i.e.,keeptheindexescalcu-
latedfor thepreviousstatethesame,only calculatetheone
that changed(to datewe have only donethis optimization
in somepartsof thesystem).Currentlythesystemcanstore
millions of statesin 512Mbandevaluatesbetween500and
1500statesperseconddependingonthesizeof thestate(on
aSPARC ULTRA60).

JPFin its currentstatealreadyillustratesthat software
systemswith complex statescanbeefficientlyanalyzed(see
section4),but with somefurtherextensionsandbetterhard-
wareplatformsto runit on,webelieve,systemsof upto 10k
linesof codecouldbeanalyzed.

3.3 Curbing the State-explosion

Maybethe mostchallengingpart of modelcheckingis
reducingthesizeof thestate-spaceto somethingthatyour
tool canhandle.Sincedesignsoftencontainlessdetailthan
implementations,modelcheckingis often thoughtof asa
techniquethat is bestappliedto designs,rather than im-
plementations.We believe that applyingmodel checking

3All the tablesareimplementedashashtables,andin somecasesthe
“index” usedwill bea referenceto anobjectratherthananintegervalue.



by itself to programswill not scaleto programsof much
morethan10k lines.Theavenuewearepursuingis to aug-
mentmodelcheckingwith informationgatheredfrom other
techniquesin orderto handlelargeprograms.Specifically,
weareinvestigatingtheuseof abstractinterpretation,static
analysisandruntimeanalysisto allow moreefficientmodel
checkingof Java programs.

3.3.1 Abstraction

Recently, theuseof abstractionalgorithmsbasedonthethe-
ory of abstractinterpretation[8], havereceivedmuchatten-
tion in the modelcheckingcommunity[14, 9, 36, 37, 5].
Thebasicideaunderlyingall of theseis thattheuserspec-
ifies an abstraction function for certainpartsof the data-
domainof a system,andthemodelcheckingsystemthen,
by using decisionprocedures,eitherautomaticallygener-
ates,on-the-flyduring modelchecking,a state-graphover
the abstractdata[14, 36, 9] or automaticallygeneratesan
abstractsystem,that manipulatesthe abstractdata,which
canthenbemodelchecked[37, 5]. The trade-off between
thetwo techniquesis that thegenerationof thestate-graph
can be more precise,but at the price of calling the deci-
sion proceduresthroughoutthe model checkingprocess,
whereasthe generationof the abstractsystemrequiresthe
decisionproceduresto becalledproportionalto thesizeof
the program. It hasbeenour experiencethat abstractions
areoften definedover small partsof the program,within
oneclassor over a smallgroupof classes,hencewe favor
thegenerationof abstractprograms,ratherthantheon-the-
fly generationof abstractstate-graphs.Also, it is unclear
whethertheabstractstate-graphapproachwill scaleto sys-
temswith morethana few thousandstates,dueto thetime
overheadincurredby calling thedecisionprocedures.

Specifically we have developed an abstractiontool
for Java that takes as input a Java program anno-
tated with user-defined predicatesand, by using the
StanfordValidity Checker (SVC) [1], generatesanother
Java program that operateson the abstractpredicates.
For example, if a program containsthe statementx++
and we are interested in abstracting over the predi-
catex==0 , writtenasAbstract.addBoolean("B",x
== 0) , then the incrementstatementwill be abstracted
to the code: “ if (B) then B = false else B =
Verify.randomBool() ” wherethe randomBool()
methodindicatesa nondeterministicchoice. The BAN-
DERA tool usessimilar techniquesto abstractthe data-
domainsof say an integer variable in Java to work over
the positive, negativeandzero (the so-calledsign abstrac-
tion), by using the PVS model checker. The novelty of
our approachlies in the fact that we can abstractpredi-
catesover morethanoneclass:for example,if classA has
a field x and classB hasa field y then we can specify a

predicateAbstract.addBoolean("xGTy", A.x >
B.y) . Theabstractedcodeallows for many instantiations
of objectsof classA andB to be handledcorrectly— the
interestedreaderis referredto [43] for moredetailson the
techniquesused.

AlthoughourJavaabstractiontool is still underdevelop-
mentwe have hadvery encouragingresults. For example
we can, in a matterof seconds,abstractthe omnipresent
infinite-stateBakery algorithmwritten in Java to one that
hasfinite-stateand can be checked exhaustively. In sec-
tion 4.1we alsoshow how theabstractiontool is usedon a
realexample.

3.3.2 Static Analysis

Staticanalysisis a techniqueoftenused,in all areasof soft-
wareengineering,to achieve a reductionin programsize.
Only comparatively recentlyhastherebeenany activity in
usingit to reducethesizeof systemsbeforemodelcheck-
ing. Specifically, it was noticedthat slicing [41], can be
a usefulway of reducingprogramsizeto allow moreeffi-
cient modelchecking[31, 4]. The bestexponentof using
slicing to reduceJava programsfor modelcheckingis the
BANDERA tool [6], wherethey usethevariablesoccurring
in anLTL formula in their slicing criteria. We believe this
is avery interestingavenuefor furtherresearchandarecur-
rentlyin theprocessof interfacingJPFwith theBANDERA
tool.

Within JPFwe arecurrentlyusingstaticanalysistech-
niquesto determinewhich Java statementsin a threadare
independentof statementsin otherthreadsthatcanexecute
concurrently. This information is then usedto guide the
partial-orderreductions[27] built into JPF. Partial-orderre-
ductiontechniquesensurethatonly oneinterleaving of in-
dependentstatementsis executedwithin themodelchecker.
It is well establishedfrom experiencewith theSpinmodel
checker that partial-orderreductionsachieve an enormous
state-spacereductionin almostall cases.We havehadsim-
ilar experiencewith JPF, whereswitchingon partial-order
reductionscausedmodelcheckingrunsthatranfor hoursto
finishwithin minutes.Webelievemodelcheckingof (Java)
programswill notbetractablein generalif partial-orderre-
ductionsarenot supportedby themodelcheckerandin or-
der to calculatethe independencerelationsrequiredto im-
plementthereductions,staticanalysisis required.

3.3.3 Runtime Analysis

Runtimeanalysisis conceptuallybasedon the ideaof ex-
ecutingtheprogramonce,andobservingthegeneratedex-
ecutiontraceto extractvariouskindsof information. This
informationcanthenbeusedtopredictwhetherotherdiffer-
entexecutiontracesmayviolatesomepropertiesof interest
(in additionof courseto demonstratewhetherthegenerated



traceviolatessuchproperties).Notethat thegeneratedex-
ecutiontraceitself doesnothave to violatetheseproperties
in orderfor theirpotentialviolation in othertracesto bede-
tected. Thesealgorithmstypically will not guaranteethat
errorsarefoundsincethey work onanarbitrarytrace.They
alsomayyield falsepositives.Whatis attractiveaboutsuch
algorithmsis, however, that they scalevery well, andthat
they oftencatchtheproblemsthey aredesignedto catch.In
practiceruntimeanalysisalgorithmswill notstoretheentire
executiontrace,but will maintainsomeselectedinforma-
tion aboutthepast,andeitherdo analysisof this informa-
tion on-the-fly, or after programtermination. An example
is the dataracedetectionalgorithmEraser[38] developed
at Compaq. Anotherexampleis a locking orderanalysis
calledLockTreewhich we have developed.Both theseal-
gorithmshavebeenimplementedin JPF. Below wedescribe
thesetwo algorithms,andthendescribehow they areinte-
gratedin JPFto run stand-alone,or integratedwith model
checkingto reducethestatespace.

TheEraseralgorithmdetectsdataraces.A dataraceoc-
curswhentwo concurrentthreadsaccessa sharedvariable
andwhenat leastoneaccessis a write, andthethreadsuse
no explicit mechanismto prevent the accessesfrom being
simultaneous.The programis dataracefree if for every
variablethere is a nonemptyset of locks that all threads
own whenthey accessthe variable. The Eraseralgorithm
worksby maintainingfor eachvariable � a set �� of those
locksactivewhenthreadsaccessthevariable.Furthermore,
for eachthread� is maintainedaset �� of thoselockstaken
by thetreadat any time. Whenever a thread� accessesthe
variable� , theset  � is refinedto theintersectionbetween
 � and  � (  ���  ���  � ), althoughthefirst accessjustas-
signs � to  � . A raceconditionmaybepotentialif  � ever
becomesempty. Thealgorithmdescribedin [38] is relaxed
to allow variablesto beinitialized without locks,andto be
readby severalthreadswithout locks,if no-onewrites.

The LockTree algorithm looks for potentialdeadlocks
by detectingdifferencesin theorderin which threadstake
locks. A classicaldeadlocksituationcanbedefinedasone
thread��� accessingtwo Locks � and  , in thatorder, while
anotherthreadaccessesthemin thereverseorder. Thedead-
lock may thenoccur if ��� takes � , andthen ��� takes  .
Now noneof the threadscancontinue. If we definedead-
lock in this limited way, a programis deadlockfree if all
locksareaccessedin the sameorder. The LockTreealgo-
rithm searchesfor theviolationof suchanorderingbetween
locks.It maintainsatreeof lock ordersfor eachthread,and
comparesthesetreesat theendof anexecution.This is in
contrastwith theEraseralgorithmwhich doestheanalysis
on-the-fly.

Runtimeanalysiscanbeusedin two modeswithin JPF.
It canfirst of all be usedstand-alonein simulationmode.
Second,runtimeanalysiscan be usedto guide the model

checker. WehavemadeexperimentswheretheErasermod-
ule in JPFgeneratesa so-calledracewindowconsistingof
thethreadsinvolvedin aracecondition.Themodelchecker
is thenlaunched,focusingon the racewindow by forcing
thescheduleralwaysto pick threadsin thewindow before
otherthreads.In thenearfuture,weplantoperformruntime
analysisduringthemodelcheckingitself.

4 Applications of JPF Tools

In this sectionwe describethe applicationof JPFand
its relatedtools to two real-world examples.The first is a
modelof a spacecraftcontroller(section4.1) in which we
illustratehow JPFcanfind errorsthat were introducedin
the codingphase(i.e. afterdesign).This examplealsoil-
lustrateshow the different techniquesusedin JPFcan be
combined.Thesecondexampleis areal-timeoperatingsys-
tem(section4.2)with asubtleerrorin thetime-partitioning
of threads,thatis in factanexampleof anerrorthatwasin-
troducedduringdesign,but wasnot discoveredduring the
designdueto a lackof detail.

4.1 The RemoteAgent SpacecraftController

TheRemoteAgent(RA) is anAI-basedspacecraftcon-
troller that hasbeendevelopedat NASA Ames Research
Center. It consistsof threecomponents:a Plannerthatgen-
eratesplansfrom missiongoals;anExecutive thatexecutes
theplans;andfinally a Recovery systemthatmonitorsthe
RA’s status,andsuggestsrecovery actionsin caseof fail-
ures. The Executive containsfeaturesof a multi-threaded
operatingsystem,andthePlannerandExecutive exchange
messagesin an interactive manner. Hence,this systemis
highly vulnerableto multi-threadingerrors. In fact,during
realflight in May 1999,theRA deadlockedin space,caus-
ing thegroundcrew to put thespacecrafton standby. The
groundcrew locatedthe error using datafrom the space-
craft,but askedasa challengeour groupif we couldlocate
the error usingmodelchecking. This resultedin an effort
describedin [18], andwhichweshallshortlydescribein the
following. Basicallywe identifiedthe error usinga com-
binationof codereview, abstraction,andmodel checking
using JPF1,the first generationof Java PathFinder. Dur-
ing codereview we got a suspicionaboutthe error since
it resembledonediscoveredusingtheSPINmodelchecker
beforeflight [19]. The modelingthereforefocusedon the
codeundersuspicionfor containingtheerror. Whatwewill
describein thefollowing is theabstractionprocessusingthe
abstractiontool,whichalsoworksfor thenew generationof
JPF.

The major two componentsto be modeledwereevents
and tasks,as illustratedin Figure 1. The figure shows a



Java classEvent from which eventobjectscanbe instan-
tiated. Theclasshasa local countervariableandtwo syn-
chronizedmethods,one for waiting on the event andone
for signalingthe event, releasingall threadshaving called
wait for event . In orderto catcheventsthatoccurwhile
tasksare executing, eachevent has an associatedevent
counterthat is increasedwhenever theeventis signaled.A
taskthenonly calls wait for event in casethis counter
hasnotchanged,hence,therehavebeennonew eventssince
it waslast restartedfrom a call of wait for event . The
figureshows the definitionof oneof the tasks. The task’s
activity is definedin therun methodof theclassPlanner ,
which itself extendstheThread class,a built-in Java class
thatsupportsthreadprimitives.Thebodyof therun method
containsan infinite loop, wherein eachiterationa condi-
tional call of wait for event is executed.Thecondition
is thatno new eventshave arrived,hencetheeventcounter
is unchanged.

class Event {
int count = 0;
public synchronized void wait_for_event() {

try{wait();}catch(InterruptedException e){};
}
public synchronized void signal_event(){

count = count + 1;
notifyAll();

} }

class Planner extends Thread{
Event event1,event2;
int count = 0;
public void run(){

count = event1.count;
while(true){

if (count == event1.count)
event1.wait_for_event();

count = event1.count;
/* Generate plan */
event2.signal_event();

} } }

Figure 1. The RAX Error in Java

The shown program has theoretically infinitely
many reachablestates due to the repeatedincrement
of the count variable in the events. We use abstrac-
tion to remove those count variables by specifying
Abstract.remove(count) in the classesof Event and
Planner . In placeof thesevariables,we declareabstrac-
tion predicatescorrespondingto those predicatesin the
programthatinvolvecount variables.For instance,weput
Abstract.addBoolean("EQ",count==event 1.coun t)

in the definition of the Planner class. After having an-
notatedthe programwith theseabstractiondeclarations,
the abstraction tool is applied and a new abstracted
programis generated. JPF thereafterreveals the dead-
lock in this abstractedprogram. The error trace shows
that the Planner first evaluates the test “ (count ==

event1.count) ”, which evaluatesto true; then, before
the call of event1.wait for event() the Executive

signalstheevent, therebyincreasingtheeventcounterand
notifying all waiting threads,of which therearenone.The
Plannernow unconditionallywaits and missesthe signal.
The solution to this problemis to enclosethe conditional
wait in a critical sectionsuchthat no eventscanoccur in
betweenthe test and the wait. In fact, the samepattern
occurredin several placesand in all other placesthere
was sucha critical sectionaround. This was simply an
omission.

The abstractJava model of what happenedon board
the spacecraftwascreatedbasedon a suspicionaboutthe
sourceof the error obtainedduring code review. This
suspicion was createdby the fact that this same pat-
tern had been found to causeerrors in a different part
of the RA during the pre-flight effort using the SPIN
model checker two years before [19]. The source of
the error, a missingcritical section,could, however, have
beenfound automaticallyusing the Eraserdatadetection
algorithm. The variable count in class Event is ac-
cessedunsynchronizedby the Planner’s run method in
theline: “ if (count == event1.count) ”, specifically
the expression:event1.count . Henceeven thoughthe
signal event called by the Executive will increasethe
variablesynchronized,the above condition in the Planner
canbeexecutedevenduringsucha signal.This maycause
adataracewherethecount variableis accessedsimultane-
ouslyby thePlannerandtheExecutive. WhenrunningJPF
in Erasermode,it detectsthis raceconditionimmediately.
Thiscouldbeenoughto locatetheerror, but only if onecan
seetheconsequences.TheJPFmodelchecker, on theother
hand,canbeusedto analyzetheconsequences.

To illustrate JPF’s integration of runtime analysisand
modelchecking,the examplewasmadeslightly morere-
alistic by addingextra threadsthatmadetheJava program
resemblethe real system. The new programhad more
than � ��� � states. Thenwe appliedJPFin its specialrun-
timeanalysis/modelcheckingmode.It immediatelyidenti-
fied theraceconditionusingtheEraseralgorithm,andthen
launchedthemodelcheckeron a threadwindow consisting
of thosethreadsinvolved in the racecondition: the Plan-
nerandtheExecutive,locatingthedeadlock- all within 25
seconds.As anadditionalexperimentin collaborationwith
the designersof the BANDERA tool, we fed part of the
resultof the racedetection,namelythevariablethat is ac-
cessedunprotected,into BANDERA’sslicingtool,whichin
turncreatedaprogramslicewhereall codeirrelevantto the
valueof thecounterhadbeenremoved.JPFthenfoundthe
deadlockonthisslicedprogram.This illustratesourphilos-
ophy of integrating techniquesfrom different disciplines:
abstractionwasusedto turn an infinite programinto a fi-
niteone,runtimeanalysiswasusedto pinpointproblematic
code,slicing wasusedto reducethe program,andfinally
themodelcheckerwaslaunchedto analyzetheresult.



4.2 The DEOSAvionicsOperating System

The DEOS real-time operatingsystem,developedby
Honeywell for use within businessaircraft, is written in
C++. During a manualanalysisof the codethe develop-
ers noticeda subtleerror in the system,that testinghad
not pickedup. Without relatingwhat theerrorwas,a slice
of the original code,that containedthe error, washanded
over to NASA Ames with the goal being to seewhether
a modelchecker canfind the error. The error wassubse-
quently found after a translationof the codeto Promela.
A full accountof this verificationexercisecanbefound in
[34]. Sincethesliceof DEOSis fairly large,

� � ���
� linesof
C++, andtheerrorvery subtle,it seemedlike a goodcan-
didateonwhich to validateourphilosophyof modelcheck-
ing codedirectly. As a first stepthe C++ codewastrans-
latedto Java; this wasstraight-forward, sincethe original
C++ codecontainedvery little pointerarithmeticetc. This
resultedin 14 Java classescontainingapproximately1000
lines of code. The DEOSsystemmustbe put in parallel
with a nondeterministicenvironmentin orderto do model
checking.Luckily theenvironmentcreatedfor thePromela
modelcouldbere-used(by translationinto Java) to a large
extent. This addedanother6 classesto the system,for a
combinedtotal of 1443 lines of Java code,making it by
far the largestexample(in termsof lines of code)ever at-
temptedby JPF. Onechangethat wasrequiredin the Java
versionof themodelcheckingwasthatwe hadto createan
invariantthatwouldshow whentheerroroccurred,sincethe
Promelaversionusedan LTL formula, which our current
systemdoesnot support. This invariantis fairly complex,
92 linesof Java, andwascreatedby oneof thedevelopers
of theDEOSsystem.

As with the Spin versionwe startedoff by limiting the
search-depthof the modelchecker, sincethe original sys-
tem hasinfinitely many states. Initial runs werediscour-
aging,sincetheerrorwasnot foundafter runningthesys-
temfor hours.Howeverwhenpartial-orderreductionswere
switchedon the error wasfound almostinstantly. In fact,
muchfasterthanSpinfoundtheerror, but thePromelaand
Java versionsarenot identicalandhenceoneshouldread
nothinginto this result(for example,theorderof nondeter-
ministic choicesaredifferent). As in thePromelaversion,
largepartsof thesystemis executedin atomicsteps.In the
Promelaversionweappliedapredicateabstractionby hand
to reducethe systemto finitely many states,the next step
will be to do thesamewith our Java abstractiontool auto-
matically — the currentversionof the tool cannothandle
theabstractionof predicatesoverarrays,whichis arequire-
mentin thiscase.

5 Conclusionsand Future Work

In thefirst partof this paperwe arguedwhy the formal
methodssubgroupof thesoftwareengineeringcommunity
shoulddevote someof their efforts to the analysisof sys-
temsdescribedin realprogramminglanguages,ratherthan
just to theirown specialpurposenotations.Thesecondpart
of the paperdescribedhow we appliedthis philosophyto
theanalysisof Javaprograms.Specifically, weshowedthat
modelcheckingcouldbeappliedto Javaprograms,without
beinghamperedby the perceived problemsoften cited as
reasonsfor why modelcheckingsourcecodewill notwork.
In the processwe showed that augmentingmodel check-
ing with abstractinterpretation,staticanalysisandruntime
analysiscanleadto theefficientanalysisof complex (Java)
software. Although the combinationof somethesetech-
niquesarenotnew, to thebestof ourknowledge,ouruseof
automaticpredicateabstractionacrossdifferentclasses,the
useof staticanalysisto supportpartial-orderreductionsand
the useof runtimeanalysisto supportmodelcheckingare
all novel contributions.

Sincewe are drawing on different techniquesand the
synergy betweenthesetechniquesit shouldbe clear that
many areasfor future researchexists. Besidestheobvious
extensionsand improvementsof the different algorithms,
therearetwo areaswhich we feel arecrucialto thesuccess
of applyingmodelcheckingto (Java) sourcecode.Firstly,
oneneedto develop methodsto assistin the construction
of “environments”suitablefor model checking,currently
theusersof a modelcheckerwill constructanenvironment
for their modelsby hand,but we believe someautomation
will be requiredif non-expertsareto usethe (Java) model
checker. Secondly, it is naive to believe thatmodelcheck-
ing will becapableof analyzingprogramsof 100klinesor
more,hencein thesecasesonewould like to have a “mea-
sure” of how much of the systemwas checked. In soft-
ware testingthis measureis given asa coveragemeasure
andhencewearecurrentlyinvestigatingmeansto calculate
typical coveragemeasures(for example,branchcoverage,
methodcoverage,condition/decisioncoverage,etc.)during
modelcheckingwith JPF.
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